This paper focuses on the capacity-approaching, nonuniform signaling for the pulse amplitude modulated (PAM) visible light communications under the non-negativity, peak power, and dimmable average power constraints. The input distribution is characterized by three parameters, i.e., the intensities, the probabilities, and the number of mass points in the PAM constellation. In the open literature, no analytical expression can be used to obtain the capacity-achieving input distribution. In this paper, a computationally simple but capacity-approaching input distribution is alternatively derived by determining the three aforementioned parameters. The resulting input distribution can serve as a useful tool not to approach the channel capacity but to guide the practical system design. Numerical results substantiate that the derived input distribution is a capacity-approaching distribution and can offer a better performance gain in comparison with the commonly employed uniform input distribution.
Read full abstract