In this paper, a comparison of total entropy generation between a suggested design and a constant chord Wells turbine is presented. A variable chord rotor Wells turbine design is suggested in order to have a more uniform axial velocity distribution at blades leading edge in comparing conventional design to improve turbine efficiency. Each model is analysed numerically with respect to the total entropy generation due to viscous dissipation around rotor blades. Simulations have been performed by numerical solving of the steady, incompressible, three-dimensional Reynolds-averaged Navier–Stokes together with RNG k–e turbulence model equations in a non-inertial reference frame rotating with the turbine rotor. A comparison of the computed results with the available experimental data exhibits agreement in terms of efficiency, torque and input coefficients at different flow rates. Finally, the detailed comparisons of the results are done between the suggested design and the conventional Wells turbine, demonstrating a 26.02 % average decrease in entropy generation throughout the full operating range, hence supporting the superiority of the new design.
Read full abstract