Motivated by the pair-density-wave (PDW) state found in the one-dimensional Kondo-Heisenberg chain, we report on a determinant quantum MonteCarlo study of pair fields for a two-dimensional half-filled Hubbard layer coupled to an itinerant, noninteracting layer with one electron per site. In a specific range of interlayer hopping, the pairing vertex associated with PDW order becomes more attractive than that for uniform d-wave pairing, although both remain subdominant to the leading antiferromagnetic correlations at half filling. Our result sheds light on where one potentially may find a PDW state in such a model.
Read full abstract