Parkinson's disease (PD) is a degenerative neurological disorder resulting from the death of dopaminergic neurons, which, in turn, results in impaired motor and cognitive functions. Early diagnosis is important in achieving a good prognosis for PD. Currently, the only approved way to diagnose PD is through medical history, current symptoms, and neurological examination. This, however, can only happen after PD progresses far enough in patients. Biomarkers in cerebrospinal fluid (CSF) and blood plasma, however, may provide insight into the early progress of PD and potentially concurrent dementia, which can also aid in the development of novel treatments. Specifically, this systematic review explores alpha-synuclein (α-syn) and tubulin-associated unit (Tau) proteins and analyzes their potential roles as biomarkers while also touching on nilotinib and immunotherapy as potential treatment options. PubMed, PubMed Central (PMC), Medline, and Cochrane Library serve as the databases for relevant literature, upon which eligibility criteria and quality checks - Assessment of Multiple Systematic Review (AMSTAR) tool, Newcastle-Ottawa Quality Assessment Scale, Cochrane risk-of-bias assessment 2 (RoB2), and Scale for the Assessment of Narrative Review (SANRA) - were applied. The remaining literature examines the various aspects of PD and Parkinson's disease dementia (PDD) and associated biomarkers. From 10 studies, 2,361 participants, both PD patients and healthy controls (HCs), were assessed and compared. Various assessment scales, such as the Unified Parkinson's Disease Rating Scale part III (UPDRS III), were used to ascertain the severity or progression of PD in patients while also seeking a noticeable correlation with α-syn and total Tau (t-Tau). The lack of standardized clinical testing has led to conflicting reports. Thus, while the articles generally agree on the potential efficacy of α-syn and Tau protein analysis in the diagnosis, prognosis, and treatment of PD and PDD, they also argue for further testing and trials.