To overcome the limitation of isotropic heat transfer of traditional heat pipes, a novel thermal diode with asymmetric flow resistance vapor channel inspired by the goose feather fibers is proposed in this study. The thermal performance of novel thermal diode is experimentally investigated. Results show that under the wide range of operating conditions, the thermal resistance of one end surpasses the thermal resistance of the other end, indicating its excellent thermal rectification capability. Under the filling ratio of 10 % and heating power of 7.5 W, the maximum thermal resistance of the thermal diode is 5.23 times the minimum thermal resistance, demonstrating excellent asymmetric heat transfer performance. Experimental results demonstrate that the novel thermal diode proposed in this study can easily change its unidirectional heat transfer direction by simply adjusting the internal filling ratio, showing significant application potential in the fields of thermal control system.