Abstract

AbstractEffective and rapid heat transfer is critical to improving electronic components' performance and operational stability, particularly for highly integrated and miniaturized devices in complex scenarios. However, current thermal manipulation approaches, including the recent advancement in thermal metamaterials, cannot realize fast and unidirectional heat flow control. In addition, any defects in thermal conductive materials cause a significant decrease in thermal conductivity, severely degrading heat transfer performance. Here, the utilization of silicon‐based valley photonic crystals (VPCs) is proposed and numerically demonstrated to facilitate ultrafast, unidirectional heat transfer through thermal radiation on a microscale. Utilizing the infrared wavelength region, the approach achieves a significant thermal rectification effect, ensuring continuous heat flow along designed paths with high transmission efficiency. Remarkably, the process is unaffected by temperature gradients due to the unidirectional property, maintaining transmission directionality. Furthermore, the VPCs' inherent robustness affords defect‐immune heat transfer, overcoming the limitations of traditional conduction methods that inevitably cause device heating, performance degradation, and energy waste. The design is fully CMOS compatible, thus will find broad applications, particularly for integrated optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.