The effective filtering approach (EFA) is one of the most effective approaches for improving the network traffic performance of high-availability seamless redundancy (HSR) networks. However, because EFA uses port locking (PL) for detecting nondestination doubly-attached nodes with HSR protocol (DANH) rings in HSR networks, it forwards the first sent frame to all DANH rings in the network. In addition, it uses a control message for discovering passive QuadBox rings in both unidirectional and bidirectional communications. In this study, we propose an enhanced version of EFA called enhanced-EFA (eEFA) that does not forward unicast frames to nondestination DANH rings. eEFA does not use any control message to discover passive QuadBox rings in bidirectional communications. eEFA thus reduces the network traffic in HSR networks compared with EFA. Analytical and simulation results for a sample network show that the traffic reduction of eEFA was 4–26% and 2–20% for unidirectional and bidirectional communications, respectively, compared to EFA. eEFA, thus, clearly saves network bandwidth and improves the network performance.
Read full abstract