We consider an effect of a strong magnetic field on the ground state and macroscopic coherent tunneling in small antiferromagnetic particles with uniaxial and biaxial single-ion anisotropy. We find several tunneling regimes that depend on the direction of the magnetic field with respect to the anisotropy axes. For the case of a purely uniaxial symmetry and the field directed along the easy axis, an exact instanton solution with two different scales in imaginary time is constructed. For a rhombic anisotropy the effect of the field strongly depends on its orientation: with the field increasing, the tunneling rate increases or decreases for the field parallel to the easy or medium axis, respectively. The analytical results are complemented by numerical simulations.