Magnetic anisotropy is a crucial characteristic for enhancing the spintronic device performance. The synthesis of SmCrGe3 single crystals through a high-temperature solution method has led to the determination of uniaxial magnetocrystalline anisotropy. Phase verification was achieved by using scanning transmission electron microscopy (STEM), powder, and single-crystal X-ray diffraction techniques. Electrical transport and specific heat measurements indicate a Curie temperature (TC) of approximately 160 K, while magnetization measurements were utilized to determine the anisotropy fields and constants. Curie-Weiss fitting applied to magnetization data suggests the contribution of both Sm and Cr in the paramagnetic phase. Additionally, density functional theory (DFT) calculations explored the electronic structures and magnetic properties of SmCrGe3, revealing a significant easy-axis single-ion Sm magnetocrystalline anisotropy of 16 meV/fu. Based on the magnetization measurements, easy-axis magnetocrystalline anisotropy at 20 K is 13 meV/fu.