Understanding the mechanical and physical behavior of aged CPB under cyclic loading is a significant area of research. Many parameters such as cementation (hydration) and the microstructure, which dictate the arrangement of particles and permeability, affect the mechanical features of cemented paste backfill (CPB). The impact of a wide range of external energy sources within the mining environment, such as cyclic loading resulting from long-term blasting, can significantly alter the applied stresses on the backfill mass. This paper aims to delve into this crucial area of research. A series of uniaxial cyclic tests were conducted on CPB, utilizing samples made from tailing materials sourced from a copper mine in South Australia. Different loading levels were applied at various curing times. All samples exhibited cyclic loading hardening behavior for cyclic loading levels between 80% and 93% of monotonic unconfined compressive strength (UCS), and a cyclic loading damage behavior was observed for 96% of UCS loading level for both 14- and 28-day curing periods. To further investigate these findings, scanning electron microscope analysis as well as sonic velocity tests were conducted for capturing microstructural changes in the samples before and after tests. These findings can be used to indicate a safe firing distance to a filled mass.
Read full abstract