Lower limb robotic exoskeletons are often studied in the context of steady-state treadmill walking in laboratory environments. However, the end goal of these devices is often adoption into our everyday lives. To move outside of the laboratory, there is a need to study exoskeletons in real world, complex environments. One way to study the human-machine interaction is to look at how the exoskeleton affects the user's gait. In this study we assessed changes in gait spatiotemporal variability when using a robotic ankle exoskeleton under proportional myoelectric control both inside on a treadmill and outside overground. We hypothesized that walking with the exoskeletons would not lead to significant changes in variability inside on a treadmill or outside compared to not using the exoskeletons. In addition, we hypothesized that walking outside would lead to higher variability both with and without the exoskeletons compared to treadmill walking. In support of our hypothesis, we found significantly higher coefficients of variation of stride length, stance time, and swing time when walking outside both with and without the exoskeleton. We found a significantly higher variability when using the exoskeletons inside on the treadmill, but we did not see significantly higher variability when walking outside overground. The value of this study to the literature is that it emphasizes the importance of studying exoskeletons in the environment in which they are meant to be used. By looking at only indoor gait spatiotemporal measures, we may have assumed that the exoskeletons led to higher variability which may be unsafe for certain target populations. In the context of the literature, we show that variability due to robotic ankle exoskeletons under proportional myoelectric control does not elicit different changes in stride time variability than previously found in other daily living tasks (uneven terrain, load carriage, or cognitive tasks).