With the increasing number of satellites and rising user demands, the volume of satellite data transmissions is growing significantly. Existing scheduling systems suffer from unequal resource allocation and low transmission efficiency. Therefore, effectively addressing the large-scale multi-objective satellite data transmission scheduling problem (SDTSP) within a limited timeframe is crucial. Typically, swarm intelligence algorithms are used to address the SDTSP. While these methods perform well in simple task scenarios, they tend to become stuck in local optima when dealing with complex situations, failing to meet mission requirements. In this context, we propose an improved method based on the minimum angle particle swarm optimization (MAPSO) algorithm. The MAPSO algorithm is encoded as a discrete optimizer to solve discrete scheduling problems. The calculation equation of the sine function is improved according to the problem’s characteristics to deal with complex multi-objective problems. This algorithm employs a minimum angle strategy to select local and global optimal particles, enhancing solution efficiency and avoiding local optima. Additionally, the objective space and solution space exhibit symmetry, where the search within the solution space continuously improves the distribution of fitness values in the objective space. The evaluation of the objective space can guide the search within the solution space. This method can solve multi-objective SDTSPs, meeting the demands of complex scenarios, which our method significantly improves compared to the seven algorithms. Experimental results demonstrate that this algorithm effectively improves the allocation efficiency of satellite and ground station resources and shortens the transmission time of satellite data transmission tasks.
Read full abstract