The extreme variability of the mitochondrial (mito) genomes of bivalves makes it difficult to understand their evolutionary dynamics, given that species from different families do not share comparable features. We compared the mitogenomes from four Paphia clams (three of them were firstly sequenced) and found that mitogenome reorganization among the four congeneric species is not random but follows phylogenetic trends. Start/stop codon variations are species-correlated rather than gene-correlated, and bear useful phylogenetic information. Unique start/stop codon usage in P. euglypta and A+T content in P. amabilis indicates that these mitogenome-level characters, usually considered to be conservative features in other lineages, may not be phylogenetically evolved, but may have evolved via species-specific mitogenomic maintenance mechanisms. Variable divergence of two trnM genes in different lineages may demonstrate differences in mechanisms by which paralogous trnM genes are maintained. Sequence alignment analysis indicates that the VNTRs in the four mitogenomes have a common origin. The rationale of the subgenus Neotapes Kuroda and Habe, 1971 was supported by evidence from morphological characters, mitogenomic features, as well as phylogenetic analyses using cox1 and rrnS genes. The data suggest that the taxonomic basis of the subgenus should be “smooth surface” but not “undulated lines,” and P. textile should be classified to the Neotapes subgenus.
Read full abstract