The growth of large diameter, semi-insulating GaAs crystals of improved purity by Liquid Encapsulated Czochralski (LEC) pulling from pyrolytic boron nitride (PBN) crucibles and characterization of this material for direct ion implantation technology, is described. Three-inch diameter, 〈100〉-oriented GaAs crystals have been grown in a high pressure Melbourn crystal puller using 3 kg starting charges synthesized in-situ from 6/9s purity elemental gallium and arsenic. Undoped and Cr-doped LEC GaAs crystals pulled from PBN crucibles exhibit bulk resistivities in the 10 7 and 10 8 Ω cm range, respectively. High sensitivity secondary ion mass spectrometry (SIMS) demonstrates that GaAs crystals grown from PBN crucibles contain residual silicon concentrations in the mid 10 14 cm −3 range, compared to concentrations up to the 10 16 cm −3 range for growths in fused silica containers. The residual chromium content in undoped LEC grown GaAs crystals is below the SIMS detection limit for Cr (4 × 10 14 cm −3). The achievement of direct ion implanted channel layers of near-theoretical mobilities is further evidence of the improved purity of undoped, semi-insulating GaAs prepared by LEC/PBN crucible techniques. Direct implant FET channels with (1–1.5) × 10 17 cm −3 peak donor concentrations exhibit channel mobilities of 4,800–5,000 cm 2/V sec in undoped, semi-insulating GaAs substrates, compared with mobilities ranging from 3,700 to 4,500 cm 2/V sec for various Cr-doped GaAs substrates. The concentration of compensating acceptor impurities in semi-insulating GaAs/PBN substrates is estimated to be 1 × 10 16 cm −3 or less, and permits the implantation of 2 × 10 16 cm −3 channels which exhibit mobilities of 5,700 and 12,000 cm 2/V sec at 298K and 77K, respectively. Discrete power FET's which exhibit 0.7 watts/mm output and 8 dB associated gain at 8 GHz have been fabricated using these directly implanted semi-insulating GaAs substrates.
Read full abstract