The present study was conducted to characterize the clinicopathologic characteristics, immunohistochemical staining results, and immune checkpoint inhibitors (ICIs) efficacy in patients with SMARCA4-deficient/TP53 mutant lung cancer. Patients diagnosed with advanced or metastatic undifferentiated lung cancer harboring SMARCA4-deficient and TP53 mutations, however, without targetable sensitive mutations were retrieved from the electronic medical record system. Descriptive statistics were used to describe the baseline characteristics and clinical features including age, gender, eastern cooperative oncology group performance status, disease stage, smoking status, chief complaint, site of the primary mass, tumor size, gross type, symptoms, local invasion, and metastatic sizes. Immunological markers and potential drive genes were detected by immunohistochemical staining and next generation sequencing. Efficacy and safety profile of ICIs in included patients was evaluated with progression-free survival and overall survival. Between January 2019 and September 2022, there were 4 patients included within the inclusion criteria in the present study. Biomarkers including CK, CK7, and integrase interactor 1 were detected positive, however, other immunological markers including CK20, CD56, P63, P40, NapsinA, TTF-1, CgA, Syn, BRG1, or PD-L1 were detected negative among them. Results of next generation sequencing panel were failed to discover any targetable sensitive mutations. A total of 4 mutation types of TP53, including p.C141Y, p.S240G, p.E339X (terminator acquired), and p.L130F detected for the patients, respectively. Microsatellite stability status, as well as low tumor mutation burden was identified among all the patients. Median progression-free survival for ICIs as first line treatment and median overall survival were 3.25 months (range from 1.3 to 6.8 months), and 6.0 months (range from 2.7 to 9.6 months), respectively. Our results indicated that advanced lung cancer patients harboring co-occurring SMARCA4-deficient/TP53 mutations might respond to ICIs treatment, though within negative programmed cell death-ligand 1 expression or low tumor mutation burden. However, hyperprogressive disease by ICIs may also happen for such patients. The mutation types of TP53 might play a role during the exposure of ICIs, however, need further identification in basic experiments.
Read full abstract