This work presents a magnetic purification method of human erythrocyte Acetylcholinesterase (EC 3.1.1.7; AChE) based on affinity binding to procainamide (Proca) as ligand. Acetylcholinesterase is an acetylcholine-regulating enzyme found in different areas of the body and associated with various neurological disorders, such as Parkinson, Alzheymer and Amyotrophic Lateral Sclerosis. AChE from human erythrocyte purification has been attempted in recent years with low degree of purity. Here, magnetic nanoparticles (MNP) were synthesized and coated with polyaniline (PANI) and procainamide (PROCA) was covalently linked to the PANI. The extracted human erythrocyte AChE formed a complex with the MNP@PANI-PROCA and an external magnet separated it from the undesired proteins. Finally, the enzyme was collected by increasing the ionic strength. Experimental Box-Behnken design was developed to optimize this process of human erythrocyte AChE purification protocol. The enzyme was purified in all fifteen experiments. However, the best AChE purification result was achieved, about 2000 times purified, when 100 mg of MNP@PANI-PROCA was incubated for one hour with 4 ml hemolysate extract. The SDS-PAGE of this preparation presented a molecular weight of approximately 70 kDa, corroborating with few previous studies of AChE from erythrocyte purification.
Read full abstract