Abstract

Proteolysis targeting chimeras (PROTACs or degraders) represent a novel therapeutic modality that has raised interest thanks to promising results and currently undergoing clinical testing. PROTACs induce the selective proteasomal degradation of undesired proteins by the formation of ternary complexes (TCs). Having knowledge of the 3D structure of TCs is crucial for the design of PROTAC drugs. Here, we describe DegraderTCM, a new computational method for modeling PROTAC-mediated TCs that requires low computational power and provides sound results in a short time span. We validated DegraderTCM against a selected set of experimentally determined structures and defined a method to predict the PROTAC degradation activity based on the computed TC structure. Finally, we modeled TCs of known degraders holding significance for defining the method's applicability domain. A retrospective analysis of structure-activity relationships unveiled possibilities for utilizing DegraderTCM in the initial stages of designing novel PROTAC drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call