The axially polarized multilayer piezoelectric composite cylindrical transducers with adjustable multifrequency capability have been proposed by adjusting the external electric resistance and the ratio of piezoelectric layer numbers between the actuator part and the sensor part, which have promising potential in designing the novel cymbal transducer for underwater sound projector and ultrasonic radiator applications. In the previous studies, the multilayer models were established to guide the design of the transducers with arbitrary layer number, and analyzed the dynamic characteristics theoretically. In this work, an experimental study is performed to validate the theoretical models and predictions. Piezoelectric rings with multiple concentric annular electrodes are designed to characterize the multilayer piezoelectric composite cylindrical transducers. The top surface of the piezoelectric rings is divided into two separate parts. One part is covered by multiple concentric annular electrodes, corresponding to the piezoelectric layers, and the other part is uncovered, corresponding to the elastic layers. Four prototypes are fabricated and each consists of four concentric annular electrodes. The impedance spectra are measured by the impedance analyzer to obtain the resonance and anti-resonance frequencies. Effects of two adjusting methods on the dynamic characteristics are evaluated experimentally. The experimental results basically coincide with the theoretical ones. This comprehensive experimental work assures the feasibility of using axially polarized multilayer piezoelectric composite cylindrical transducers with adjustable multifrequencies and confirms the benefit of the developed theoretical models for guiding the fabrication and optimization of this type of transducers.
Read full abstract