Underwater wireless sensor networks (UWSNs) have been applied in lots of fields. However, coverage holes are usually caused by complex underwater environment. Coverage holes seriously affect UWSNs’ performance and quality of service; thus, their recovery is crucial for 3D UWSNs. Although most of the current research recovery algorithms demand hole detection, the number of additional mobile nodes is too large, the communication and computing costs are high, and the coverage and energy balance are poor. Therefore, these methods are not suitable for UWSN hole repairing. In order to enhance the performance of hole recovery, a coverage hole recovery method for 3D UWSNs in complex underwater environments based on virtual force guidance and energy balance is proposed. The proposed method closely combines the node energy and considers complex environmental factors. A series of multi-dimensional virtual force models are established based on energy between nodes, area boundaries, zero-energy holes, low-energy coverage holes, underwater terrain, and obstacle forces. Then, a coverage hole recovery method for 3D UWSNs based on virtual force guidance and energy balance (CHRVE) is proposed. In this method, the direction and step size of mobile repairing node movement is guided by distributed computation of virtual forces, and the nodes are driven towards the target location by means of AUV or other carrier devices. The optimal position to improve coverage rate and node force balance is obtained. Simulation experiments show good adaptability and robustness to complex underwater terrain and different environments. The algorithm does not require precise coverage hole boundary detection. Furthermore, it balances network energy distribution significantly. Therefore, this method reduces the frequency of coverage hole emergence and network maintenance costs.
Read full abstract