Although hydrogels have attracted increasing attention in the stretchable devices, the low adhesion properties and poor environmental adaptation still seriously restrict their development and application. Herein, we focused on the interaction between polymer networks with disperse media and their resultant influence on gel performance, and constructed self-adhesive and environment-tolerant gelatin/polyacrylamide supramolecular-polymer double-network (Gelatin/PAM SP-DN) eutectogels using multiple supramolecular interactions between natural macromolecule and well-designed deep eutectic solvent (DES). The dual networks of Gelatin/PAM SP-DN eutectogels produced significant supramolecular forces with DES, including hydrogen bonding and electrostatic interaction, contributing to enhance the energy dissipation capacity. Additionally, the Gelatin-PAM SP-DN eutectogels were more prone to generate strong bonding force to various substrates, showcasing both in-situ and ex-situ adhesion performance, and even being used for wet and underwater adhesion. The eutectogels revealed excellent environmental tolerance to maintain excellent mechanical flexibility, conductivity and adhesion at high and low temperatures, ensuring the constructed sensor to sensitively and reliably perceive strain, pressure and human motions over a wide temperature range. Also, the eutectogel demonstrated great potential as a temperature sensor. This work opens up a new horizon in the design of multifunctional and environment-tolerant natural macromolecule-based gel materials for flexible electronics, human-machine interaction and health diagnosis.