The most urgent public-health problem today is to devise effective strategies to minimize the destruction caused by the AIDS epidemic. This complex problem will involve medical advances and new public-health and education initiatives. Mathematical models based on the underlying transmission mechanisms of the AIDS virus can help the medical/scientific community understand and anticipate its spread in different populations and evaluate the potential effectiveness of different approaches for bringing the epidemic under control. Before we can use models to predict the future, we must carefully test them against the past spread of the infection and for sensitivity to parameter changes. The long and extremely variable incubation period and the low probability of transmitting the AIDS virus in a single contact imply that population structure and variations in infectivity both play an important role in its spread. The population structure is caused by differences between people in numbers of sexual partners and the use of intravenous drugs and because of the way in which people mix among age, ethnic, and social groups. We use a simplified approach to investigate the effects of variation in incubation periods and infectivity specific to the AIDS virus, and we compare a model of random partner choices with a model in which partners both come from similar behavior groups.