To best prepare students for the real-world research environment, key skills, including experimental design, data analysis, communication of results, and critical thinking, should be key components of undergraduate science courses. Furthermore, the impact of the COVID-19 pandemic on in-person teaching has resulted in a need to develop courses that enable flexible learning. This paper details the laboratory component of a senior-level toxicology class that was developed to emphasize all these skills and allow for flexible learning. The aim of the laboratory class was for students to determine how curcumin protected against acetaminophen-induced hepatoxicity. To stimulate critical thinking, students were required to choose a maximum of four experiments from the six on offer. Before conducting an experiment, students stated a hypothesis and selected the appropriate treatment groups. Once an experiment was completed, students were given access to a complete dataset, on which they performed statistical analysis and drew conclusions. Students who were unable to attend the laboratory session in person were able to complete the required pre-lab work and access the dataset. Following each experiment, students could write a lab summary, and receive thorough feedback. The final assessment was a written manuscript of their findings as well as a chance to respond to reviewer comments. This teaching approach prioritized the critical thinking, analysis, and experimental design aspects of scientific research. Overall, this structure was well received by students and it could easily be adapted for use on other life science courses.
Read full abstract