AbstractThe Paradox Basin, straddling Utah, Colorado, Arizona, and New Mexico is characterized by an intricate amalgamation of evaporites and clastic layers and is dominated by prominent salt walls and related subsurface structures. Our research offers a new examination of the stress distribution across the basin, deriving from continuous and discrete stress measurements conducted in boreholes in the region and focal mechanism analysis, emphasizing variations over salt structures. Integrating Coulomb failure criteria with probabilistic methods, we assess potential fault movements resulting from fluid pressure alterations. Our approach provides a comprehensive understanding of the Paradox Basin's state of stress, showing a continuous change of the maximum horizontal stress orientation from N‐S at the Wasatch Fault Zone to WNW‐ESE in the northern part of the Paradox Basin and to WSW‐ENE in the southern part of the basin. Further East, into the Colorado Plateau and the Uncompahgre Uplift, the SHmax orientation becomes E‐W. Decoding stress orientation dynamics has enabled critical insights into fault slip potential, especially in the basin's northern region. The salt wall faults are less likely to slip, and the Paradox Formation's evaporite and clastic rock sequence can serve as a potential low seismic risk target for carbon storage and hydrocarbon extraction.
Read full abstract