Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context.This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order to for the expectation value and from to for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are 99.15% for the expectation value and 94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Read full abstract