change and uterine activity as predictors of preterm delivery. American Journal of Perinatology, 6. 185-190. Copper, R., Goldberg, R., Davis, R., Cutter, G., DuBard, M., Corliss, D., & Andrews, J. (1990). Warning symptoms: uterine contractions, and cervical exam findings in women at risk for preterm labor. American Journal of Obstetrics and Gynecology, 162, 748-754. Grzymala-Busse, .I. (1991). Managing Uncertainty in Expert Systems. Boston, MA: Kluwer Academic Publishers. Hinshaw, A. (1989). Nursing science: The Challenge to develop knowledge. Nursing Science Quarterly, 2, 162-171. Holbrook, R., Laros, R., & Creasy, R. (1989). Evaluation of a risk-scoring system for prediction of preterm labor. American Journal of Perinatology, 6, 62-68. Johnson, P. (1983). What kind of expert should a system be? The Journal of Medicine and Philosophy, 8, 17-97. Keirse, M. (1989). An evaluation of formal risk scoring for preterm birth. American Journal of Perinatology. 6, 226-233. Lockwood, C., Senyei, A., Dische, M., Casal, D., Shah. K., Thung, S., Jones, L., Deligdisch, L., & Garite, T. (1991). Fetal fibronectin in cervical and’vaginal secretions as a predictor of preterm delivery. New England Journal of Medicine, 315, 669-614. McGregor, J., French, J., Richter, R., France-Buff, A., Johnson, A., Hillier, S., Judson, F., & Todd, J. (1990). Antenatal microbiologic and maternal risk factors associated with prematurity. American Journal of Obstetrics and Gynecology, 163, 1465-1473. Nunnally, J. (1978). Psychometric theory. New York. NY: McGraw-Hill. Polanyi, M. (1958). Personal knowledge: Towards a postcritical philosophy. Chicago, IL: University of Chicago Press. Quinlan, R. (1983). Learning efficient classification procedures and their application to chess end games. In Michalski, Carbonelli, & Mitchell (Eds.) Machine learning: An artificial intelligence approach (pp. 463-482). Palo Alto, CA: Tioga Publishing Company. Woolery, L. (1992) Knowledge acquisitionfor assessmenr of preterm labor risk. Unpublished doctoral dissertation. University of Kansas, Lawrence, KS.
Read full abstract