Abstract

The mathematical theory of evidence has been introduced by Glenn Shafer in 1976 as a new approach to the representation of uncertainty. This theory can be represented under several distinct but more or less equivalent forms. Probabilistic interpretations of evidence theory have their roots in Arthur Dempster's multivalued mappings of probability spaces. This leads to random set and more generally to random filter models of evidence. In this probabilistic view evidence is seen as more or less probable arguments for certain hypotheses and they can be used to support those hypotheses to certain degrees. These degrees of support are in fact the reliabilities with which the hypotheses can be derived from the evidence. Alternatively, the mathematical theory of evidence can be founded axiomatically on the notion of belief functions or on the allocation of belief masses to subsets of a frame of discernment. These approaches aim to present evidence theory as an extension of probability theory. Evidence theory has been used to represent uncertainty in expert systems, especially in the domain of diagnostics. It can be applied to decision analysis and it gives a new perspective for statistical analysis. Among its further applications are image processing, project planning and scheduling and risk analysis. The computational problems of evidence theory are well understood and even though the problem is complex, efficient methods are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.