ABSTRACTThis paper investigates finite-time adaptive neural tracking control for a class of nonlinear time-delay systems subject to the actuator delay and full-state constraints. The difficulty is to consider full-state time delays and full-state constraints in finite-time control design. First, finite-time control method is used to achieve fast transient performances, and new Lyapunov–Krasovskii functionals are appropriately constructed to compensate time delays, in which a predictor-like term is utilized to transform input delayed systems into delay-free systems. Second, neural networks are utilized to deal with the unknown functions, the Gaussian error function is used to express the continuously differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are employed to guarantee that full-state signals are restricted within certain fixed bounds. At last, based on finite-time stability theory and Lyapunov stability theory, the finite-time tracking control question involved in full-state constraints is solved, and the designed control scheme reduces learning parameters. It is shown that the presented neural controller ensures that all closed-loop signals are bounded and the tracking error converges to a small neighbourhood of the origin in a finite time. The simulation studies are provided to further illustrate the effectiveness of the proposed approach.
Read full abstract