Low-Earth orbit (LEO) satellites have fast motion and thus provide rapid geometric change relation to the ground stations in a short period of time, which are expected to improve the positioning performance. In this study, a LEO constellation of 160 LEO satellites was simulated and simulated LEO observation data at global, European, and American stations were used to estimate the uncalibrated phase delays (UPDs) and achieve static and kinematic precise point positioning (PPP) ambiguity resolution (AR). The quality of the estimated UPD products were evaluated. More than 89 % and 96 % of the wide- and narrow-lane UPDs had a posteriori residual of less than 0.15 and 0.25 cycles, respectively. In static PPP, all ambiguity fixing rates were larger than 63 %. Compared with float solutions, the average convergence time of the fix solutions at the global, European and American stations was accelerated by 8 %, 6 % and 7 %, respectively; the average root-mean-square errors (RMSEs) in the east, north, and up components at the global, European and American stations were decreased by (22 %, 20 %, 15 %), (36 %, 34 %, 28 %) and (44 %, 31 %, 29 %), respectively. In kinematic PPP, all ambiguity fixing rates were larger than 40 %. Compared with float solutions, the average convergence time of the fix solutions at the global, European and American stations was accelerated by 4 %, 19 % and 14 %, respectively; the average RMSEs in the east, north, and up components at the global, European and American stations were decreased by (10 %, 10 %, 7 %), (27 %, 22 %, 11 %) and (32 %, 20 %, 10 %), respectively. In both static and kinematic PPP, AR accelerated the convergence time and improved the positioning accuracy.
Read full abstract