Aviation emissions are continuously increasing along with the rapid development of air transportation, and results in the deterioration in regional air quality and the global climate. Accurate emission estimation is of great importance for relevant policies promotion and the sustainable development of the environment. Previous studies focused on the total emissions of a flight and lacked high precision in both spatial and temporal resolutions, especially aviation activities near ground. In this research, we propose an open-sourced emission calculation framework based on actual flight trajectories (TrajEmission), which calculates both the ground and airborne emissions simultaneously according to the configuration parameters, trajectory characteristics, and ambient conditions. We compare the emission results with five emission inventory methods. The results indicate that pollutant (nitrogen oxides, carbon monoxide, and unburned hydrocarbons) emissions in the landing and takeoff (LTO) cycle might usually be underestimated due to a lack of trajectory-based methods. In addition, in the overall results, the method based on the great circle route leads to an overestimation of 56.8% of pollutant emissions compared to the method based on actual routes. We also investigate the extent to which other factors could influence the emission results. To summarize, the TrajEmission framework can build inventories for the whole process of flight movements with high spatial–temporal resolutions and provide solid data support for environmental science and other related fields.