We derive conditions for well-posedness of semilinear evolution equations with unbounded input operators. Based on this, we provide sufficient conditions for such properties of the flow map as Lipschitz continuity, bounded-implies-continuation property, boundedness of reachability sets, etc. These properties represent a basic toolbox for stability and robustness analysis of semilinear boundary control systems. We cover systems governed by general C0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C_0$$\\end{document}-semigroups, and analytic semigroups that may have both boundary and distributed disturbances. We illustrate our findings on an example of a Burgers’ equation with nonlinear local dynamics and both distributed and boundary disturbances.