A photovoltaic (PV) system for reliable interconnection of a PV array to the grid is presented in this article. A boost converter ensures operation of the PV array at its maximum power point, and it also enables the adaptive adjustment of the dc link voltage of the interfacing voltage source converter according to the variations in the grid voltages. This prevents system tripping during the voltage sag, and helps to maintain the grid current power quality at voltage swell conditions. Even in the weak grid scenarios of unbalanced or distorted voltages, the grid currents are maintained distortion free and balanced. Furthermore, the system eliminates the dc offset in the sensed grid voltages, and ensures absence of dc offset in the grid currents. The fast dynamic response of the system to sudden load variations is obtained by employing a total least squares-based control technique, which swiftly extracts the fundamental active weights from the distorted load currents. Moreover, the PV system performs grid power quality conditioning, such as neutral current mitigation, harmonics reduction, power factor correction, and balancing of grid currents, even under the absence of PV power, such as during nights. The system performance is validated by test results at unbalanced load currents, unbalanced grid voltages, distorted grid voltages, grid voltage sag and swell, PV power variations, and dc offset in the sensed grid voltage.
Read full abstract