The ground source heat pump (GSHP) system is a promising technology to exploit shallow geothermal energy via ground heat exchangers, GHEs (e.g., deep boreholes or piles) for space heating or cooling. Although GSHP systems have been widely used in temperate regions owing to their environmentally clean characteristics and excellent energy-saving performance, their use in cooling-dominated areas, such as subtropical or tropical regions (e.g., Hong Kong or Singapore), remains limited. The operation of GSHP systems in these regions may be subjected to unbalanced seasonal thermal loads on buildings and induce heat accumulation in soils surrounding GHEs, leading to potential deterioration in the long-term performance (e.g., coefficient of performance, COP) of GSHP systems. To properly evaluate the long-term COP of GSHP systems in cooling-dominated areas, a dynamically coupled simulation approach is proposed in this study. The proposed method integrates building thermal loads with ground heat transfer under groundwater seepage flow, within a unified framework. The effectiveness of this approach is demonstrated through a case study where, in the absence of groundwater seepage flow, the soil temperature increased by 17.2 °C. In contrast, when groundwater seepage flow was considered, the GSHP system not only maintained a high long-term cooling COP but also achieved up to 30 % electricity savings. These findings demonstrate the feasibility and sustainability of applying GSHP systems in cooling-dominated areas with the aid of groundwater seepage flow.