The performance of discharge plasma in treating organic pollutants and micro-organisms in water is impressive. When discharge plasma is used to treat polluted water containing organic pollutants and microorganisms, the presence of a certain amount of microplastics (MPs) in the water is unavoidable due to the complexity of the components contained in the water and the prevalence of MPs. MPs, as one of the pollutants that are difficult to be degraded by discharge plasma, undergo physical and chemical changes that increase their risk in the environment after treatment. Therefore, it is necessary to understand the fate of MPs after being treated with discharge plasma. In this study, the surface morphology of plastics before and after discharge plasma treatment was observed by scanning electron microscopy (SEM). The plastics after discharge plasma treatment were characterized by Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) to determine the changes in oxygen-containing functional groups on the surface. The recovery of microplastics (MPs) in saturated porous media under different physicochemical and plasma oxidation conditions was investigated by column experiments. It has been shown that MPs exhibit increased recovery under conditions of increased flow rate and pH. A decrease in recovery was observed at elevated ionic strength and co-existing cation valence. High voltages and low air flow rates increase the oxidation of MPs by increasing the thermal effects of the dielectric barrier discharge (DBD) plasma system, the amount of reactive oxygen species (ROS) and the intensity of ultraviolet ray (UV) irradiation. The mobility of MPs is enhanced by a combination of these factors. The advection–dispersion equation (ADE) fits the transport data of MPs well. The interaction energy between quartz sand and MPs was calculated using the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. This study provides a new perspective on the potential risks of discharge plasma in water treatment.
Read full abstract