Photocrosslinked nanogels with a hydrophobic core and hydrophilic shell are successfully fabricated with the goal of obtaining a biocompatible and biodegradable drug carrier for hydrophobic anticancer drugs. These nanogels are composed of amphiphilic triblock copolymers, poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) (PLA-PEG-PLA), with acrylated groups at the end of the PLA segments. The copolymers are synthesized by ring-opening polymerization and possess a low CMC (49.6 mg x L(-1)), which easily helps to form micelles by self-assembly. The acrylated end groups allow the micelles to be photocrosslinked by ultraviolet irradiation, which turn the micelles into nanogels. These nanogels exhibit excellent stability as a suspension in aqueous media at ambient temperature as compared to the micelles. Moreover, the size of the nanogels is easily manipulated in a range of 150 to 250 nm by changing the concentration of crosslinkers, e.g., ethylene glycol dimethacrylate, and ultraviolet light irradiation time. The nanogels achieve a high encapsulation efficiency and offer a steady and long-term release mechanism for the hydrophobic anticancer drug, CPT. It shows that these nanogels are useful for a hydrophobic anticancer drug-carrier system. [pictures: see text] Formation of the PLA-PEG-PLA nanogels.
Read full abstract