We report the detection of a strong Milky Way-type 2175 \AA$ $ extinction bump at $z$ = 2.1166 in the quasar spectrum towards SDSS J121143.42+083349.7 from the Sloan Digital Sky Survey (SDSS) Data Release 10. We conduct follow up observations with the Echelle Spectrograph and Imager (ESI) onboard the Keck-II telescope and the Ultraviolet and Visual Echelle Spectrograph (UVES) on the VLT. This 2175 \AA$ $ absorber is remarkable in that we simultaneously detect neutral carbon (C I), neutral chlorine (Cl I), and carbon monoxide (CO). It also qualifies as a damped Lyman alpha system. The J1211+0833 absorber is found to be metal-rich and has a dust depletion pattern resembling that of the Milky Way disk clouds. We use the column densities of the C I fine structure states and the C II/C I ratio (under the assumption of ionization equilibrium) to derive the temperature and volume density in the absorbing gas. A Cloudy photoionization model is constructed, which utilizes additional atoms/ions to constrain the physical conditions. The inferred physical conditions are consistent with a canonical cold (T $\sim$ 100 K) neutral medium with a high density ($n$(H I) $\sim$ 100 cm$^{-3}$) and a slightly higher pressure than the local interstellar medium. Given the simultaneous presence of C I, CO, and the 2175 \AA$ $ bump, combined with the high metallicity, high dust depletion level and overall low ionization state of the gas, the absorber towards J1211+0833 supports the scenario that the presence of the bump requires an evolved stellar population.
Read full abstract