In conventional Kerr and Faraday microscopy, the sample is illuminated with plane-polarized light, and a magnetic domain contrast is generated by an analyzer making use of the Kerr or Faraday rotation. Here, we demonstrate possibilities of analyzer-free magneto-optical microscopy based on magnetization-dependent intensity modulations of the light. (i) The transverse Kerr effect can be applied for in-plane magnetized material, as demonstrated for an FeSi sheet. (ii) Illuminating that sample with circularly polarized light leads to a domain contrast with a different symmetry from the conventional Kerr contrast. (iii) Circular polarization can also be used for perpendicularly magnetized material, as demonstrated for garnet and ultrathin CoFeB films. (iv) Plane-polarized light at a specific angle can be employed for both in-plane and perpendicular media. (v) Perpendicular light incidence leads to a domain contrast on in-plane materials that is quadratic in the magnetization and to a domain boundary contrast. (vi) Domain contrast can even be obtained without a polarizer. In cases (ii) and (iii), the contrast is generated by magnetic circular dichroism (i.e., differential absorption of left- and right-circularly polarized light induced by magnetization components along the direction of light propagation), while magnetic linear dichroism (differential absorption of linearly polarized light induced by magnetization components transverse to propagation) is responsible for the contrast in case (v). The domain–boundary contrast is due to the magneto-optical gradient effect. A domain–boundary contrast can also arise by interference of phase-shifted magneto-optical amplitudes. An explanation of these contrast phenomena is provided in terms of Maxwell–Fresnel theory.
Read full abstract