This work reports a new method of fabricating lipid nanotubules using ultrasonic Stokes drag force in theory and experiment. Ultrasonic Stokes drag force generated using a planar piezoelectric ultrasonic transducer in a remotely controllable way is introduced. When ultrasonic Stokes drag force is applied on lipid vesicles, the lipid nanotubules attached can be dragged out from the lipid film. In order to demonstrate the formation mechanism of the lipid nanotubules produced by ultrasonic drag force clearly, a theoretical kinetic model is developed. In the experiments, the lipid nanotubules can be rapidly and efficiently fabricated using this ultrasonic transducer both in deionized water and NaCl solutions with different concentrations. The stretching speed of the lipid nanotubules can reach 33 μm/s, approximately 10 times faster than that of the existing methods. The formed lipid nanotubules have a diameter of 600 ± 100 nm (>80%). The length can reach the millimeter level. This work provided a remotely controllable, highly efficient, high-velocity, and solution environment-independent approach for fabricating lipid nanotubules.