Micro-defects in UHPFRC, inevitably generated from the manufacturing to engineering service stage, impact its durability under extreme service environments. However, relevant understanding is still insufficient. This work assesses the corrosion risk and corrosion-induced deterioration in UHPFRC containing initial micro-defects, simulated by a combination of mechanical pre-loading and thermal treatment. Analytical analyses include electrochemical tests (OCP, Tafel, EIS), SEM, MIP, compressive strength measurements, etc. Results show that initial defect degree and steel fiber contents have significant effects on the corrosion resistance and mechanical performance of UHPFRC. Micro-cracks and pores are the major channels to deepen fiber corrosion risk, degrading mechanical performance up to 52%-56% in the most severely damaged UHPFRC. The porosity is increased by the corrosion/increased defects and fiber contents up to a growth rate of 35%, 56% and 78%, respectively, as corrosion triggers the occurrence of new defects (e.g., fiber splitting, newborn micro-cracks, pores). The present results provide a reference for predicting the corrosion potential of the defective UHPFRC.
Read full abstract