ConspectusThe rational design of highly efficient catalysts relies on understanding their structure-activity relationships and reaction mechanisms at a molecular level. Such an understanding can be obtained by in situ monitoring of dynamic reaction processes using surface-sensitive techniques. Surface-enhanced Raman spectroscopy (SERS) can provide rich structural information with ultrahigh surface sensitivity, even down to the single-molecule level, which makes it a promising tool for the in situ study of catalysis. However, only a few metals (like Au, Ag, and Cu) with particular nanostructures can generate strong SERS effects. Thus, it is almost impossible to employ SERS to study transition metals (like Pt, Pd, Ru, etc.) and other nonmetal materials that are usually used in catalysis (material limitation). Furthermore, SERS is also unable to study model single crystals with atomically flat surface structures or practical nanocatalysts (morphology limitation). These limitations have significantly hindered the applications of SERS in catalysis over the past four decades since its discovery, preventing SERS from becoming a widely used technique in catalysis. In this Account, we summarize the extensive efforts done by our group since the 1980s, particularly in the past decade, to overcome the material and morphology limitations in SERS. Particular attention has been paid to the work using core-shell nanostructures as SERS substrates, because they provide high Raman enhancement and are highly versatile for application on different catalytic materials. Different SERS methodologies for catalysis developed by our group, including the "borrowing" strategy, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and SHINERS-satellite strategy, are discussed in this account, with an emphasis on their principles and applications. These methodologies have successfully overcome the long-standing limitations of traditional SERS, enabling in situ tracking of catalysis at model single-crystal surfaces and practical nanocatalysts that can hardly be studied by SERS. Using these methodologies, we systematically studied a series of fundamentally important reactions, such as oxygen reduction reaction, hydrogen evolution reaction, electrooxidation, CO oxidation, and selective hydrogenation. As such, direct spectroscopic evidence of key intermediates that can hardly be detected by other traditional techniques was obtained. Combined with density functional theory and other in situ techniques, the reaction mechanisms and structure-activity relationships of these catalytic reactions were revealed at a molecular level. Furthermore, the future of SERS in catalysis has also been proposed in this work, which we believe should be focused on the in situ dynamic studies at the single-molecule, or even single-atom, level using techniques with ultrahigh sensitivity or spatial resolution, for example, single-molecule SERS or tip-enhanced Raman spectroscopy. In summary, core-shell nanostructure-enhanced Raman spectroscopies are shown to greatly boost the application of SERS in catalysis, from model systems like single-crystal surfaces to practical nanocatalysts, liquid-solid interfaces to gas-solid interfaces, and electrocatalysis to heterogeneous catalysis to photocatalysis. Thus, we believe this Account would attract increasing attention to SERS in catalysis and opens new avenues for catalytic studies.