ConspectusThe past 50 years of discovery in organic electronics have been driven in large part by the donor-acceptor design principle, wherein electron-rich and electron-poor units are assembled in conjugation with each other to produce small band gap materials. While the utility of this design strategy is undoubtable, it has been largely exhausted as a frontier of new avenues to produce and tune novel functional materials to meet the needs of the ever-increasing world of organic electronics applications. Its sister strategy of joining quinoidal and aromatic groups in conjugation has, by comparison, received much less attention, to a great extent due to the categorically poor stability of quinoidal conjugated motifs.In 2017 though, the p-azaquinodimethane (AQM) motif was first unveiled, which showed a remarkable level of stability despite being a close structural analogue to p-quinodimethane, a notably reactive compound. In contrast, dialkoxy AQM small molecules and polymers are stable even under harsh conditions and could thus be incorporated into conjugated polymers. When polymerized with aromatic subunits, these AQM-based polymers show notably reduced band gaps that follow reversed structure-property trends to some of their donor-acceptor polymer counterparts and yield organic field-effect transistor (OFET) hole mobilities above 5 cm2 V-1 s-1. Additionally, in an ongoing study, these AQM-based compounds are also showing promise as singlet fission (SF) active materials due to their mild diradicaloid character.An expanded world of AQMs was accessed through their ditriflate derivatives, which were first used to produce ionic AQMs (iAQMs) sporting two directly attached cationic groups that significantly affect the AQM motif's electronics, producing strongly electron-withdrawing quinoidal building blocks. Conjugated polyelectrolytes (CPEs) created with these iAQM building blocks exhibit optical band gaps stretching into the near-infrared I (NIR-I) region and showed exemplary behavior as photothermal therapy agents.In contrast to these stable AQM examples, the synthetic exploration of AQMs also produced examples of more typical diradicaloid reactivity but in forms that were controllable and produced intriguing and high-value products. With certain substitution patterns, AQMs were found to dimerize to form highly substituted [2.2]paracyclophanes in distinctly more appreciable yields than typical cyclophane formation reactions. Certain AQM ditriflates, when crystallized, undergo light-induced topochemical polymerization to form ultrahigh molecular weight (>106 Da) polymers that showed excellent performances as dielectric energy storage materials. These same AQM ditriflates could be used to produce the strongly electron-donating redox-active pentacyclic structure: pyrazino[2,3-b:5,6-b']diindolizine (PDIz). The PDIz motif allowed for the synthesis of exceedingly small band gap (0.7 eV) polymers with absorbances reaching all the way into the NIR-II region that were also found to produce strong photothermal effects. Both as stable quinoidal building blocks and through their controllable diradicaloid reactivity, AQMs have already proven to be versatile and effective as functional organic electronics materials.
Read full abstract