Abstract

High-throughput synthesis of well-defined, ultrahigh molecular weight (UHMW) polymers by green approaches is highly desirable but remains unexplored. We report the creation of an atom-economic enzymatic cascade catalysis, consisting of formate oxidase (FOx) and horseradish peroxidase (HRP), that enables high-throughput reversible addition-fragmentation chain transfer (RAFT) synthesis of UHMW polymers at volumes down to 50 μL. FOx transforms formic acid, a C1 substrate, and oxygen to CO2 and H2 O2 , respectively. CO2 can escape from solution while H2 O2 is harnessed in situ by HRP to generate radicals from acetylacetone for RAFT polymerization, leaving no waste accumulation in solution. Oxygen-tolerant RAFT polymerization using enzymatic cascade redox cycles was successfully performed in vials and 96-well plates to produce libraries of well-defined UHMW polymers, and represents the first example of high-throughput synthesis method of such materials at extremely low volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call