The melting and the crystallization of blends of ultra-high molecular weight polyethylene (UHMWPE) and polyethylene high density with normal molecular weight (NMWPE) are investigated by means of differential scanning calorimetry (DSC). Mixing the components at a temperature below the flow temperature of UHMWPE (215 °C) results in segregated melting and crystallization. The segregated melting and crystallization temperatures of both components do not depend on composition of the blend. The extreme enthalpy dependence on blend composition is explained in terms of mutual influence exhibited by the components with respect to each other. It is due to the inner stresses in nonflowing UHMWPE characterized with a lot of entangled tie molecules. Mixing the components above the flow temperature of UHMWPE results in only one peak of melting and crystallization respectively. Complete mixing and probably co-crystallization between the components takes place on mixing NMWPE with flowing UHMWPE.