A mitotic oscillator with one slowly increasing variable (τ L of the order of hours) and one rapidly increasing variable (τ R of the order of minutes) modulated by a timer (ultradian clock) gives an auto-oscillating solution: cells divide when this relaxation oscillator reaches a critical threshold to initiate a rapid phase of the limit cycle. Increasing values of the velocity constant in the slow equation give quasiperiodic, chaotic and periodic solutions. Thus dispersed and quantized cell cycle times are consequences of a chaotic trajectory and have a purely deterministic basis. This model of the dispersion of cell cycle times contrasts with many previous ones in which cell cycle variability is a consequence of stochastic properties inherent in a sequence of many thousands of reactions or the random nature of a key transition step.
Read full abstract