Ultra-wideband (UWB) through-wall radar has a wide range of applications in non-contact human information detection and monitoring. With the integration of machine learning technology, its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home. Although many target detection methods of UWB through-wall radar based on machine learning have been proposed, there is a lack of an opensource dataset to evaluate the performance of the algorithm. This published dataset is measured by impulse radio UWB (IR-UWB) through-wall radar system. Three test subjects are measured in different environments and several defined motion status. Using the presented dataset, we propose a human-motion-status recognition method using a convolutional neural network (CNN), and the detailed dataset partition method and the recognition process flow are given. On the well-trained network, the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%. The dataset presented in this paper considers a simple environment. Therefore, we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.