PurposeThe purpose of this paper is to describe a modified Hilbert‐based fractal antenna for ultra wideband (UWB) wireless applications. Simulation results show excellent multi‐band characteristics for UWB wireless applications.Design/methodology/approachA Hilbert curve‐based fractal is optimised for self‐replicating, space‐filling and self‐avoiding properties. In the proposed design, the Hilbert curve is applied to a rectangle as an initial iteration and maintained for the later iterations. Additionally, a Yagi‐like strip is removed from the second iteration of the Hilbert patch and a hexagonal portion is removed from the substrate to achieve good optimization. The antenna feed is created through a micro‐strip line with a feeding section. Finally, a partial ground plane technique is used for improved impedance matching characteristics. A finite element method (FEM) is used to simulate the modified Hilbert model with commercially available Ansoft HFSS software.FindingsThe proposed antenna is miniaturized (39 mm length×30 mm width) and has multi‐band characteristics. The simulation results show that the antenna has a reflection coefficient characteristic of <−10 dB, a linear phase reflection coefficient, better than 65 percent radiation efficiency, 2.2‐4 dBi antenna gain and nearly omni‐directional radiation pattern properties over the UWB bandwidth (3.1‐10.6 GHz).Originality/valueThe antenna shows promising characteristics for the full 7.5 GHz UWB bandwidth. In addition, the performance is achieved by using laceration techniques on the Hilbert patch and substrate, respectively. A partial ground plane ensures impedance matching of 50 over full UWB bandwidth. The simulation analysis of the modified Hilbert fractal antenna design constitutes the main contribution of the paper.