The possibly complex impacts of volunteer’s heavy backpacks, chronic neck pain are significant concerns and must be considered by the scientific and academic community. However already existing several alert systems can tackle these issues, but the evaluation approaches are costly and complicated. In this regard, ReSe2/Ti3C2T x nanohybrid based flexible sensors were fabricated by low-cost vacuum filtration technique and integrated into cervical collar strain and shoulder load detection alert systems to tackle these issues. The fabricated sensor displayed an excellent gauge factor of 14.38 and an improved sensitivity of 14.06 kPa−1. The response and recovery time of the pressure and strain sensor were 288 and 90 msec at 15% strain and 95 and 182 msec at 1.477 kPa pressure. There was a negligible degradation in performance when the pressure sensor was assessed for 5000 and the strain sensor for 4500 cycles, proving that the fabricated sensors are highly durable. The comprehensive underlying transduction mechanism is elucidated by intrinsic piezoresistive properties of nanohybrid (ReSe2/Ti3C2T x ) and Schottky barrier height mechanism with complete electronic bandstructure realization using real-time ultraviolet photoelectron spectroscopy. Also, to transfer/receive data wirelessly on an Android/ios based smartphone, the fabricated sensors were connected to an electrical circuit with a microcontroller and Bluetooth module. The effective corroboration of the ReSe2/Ti3C2T x nanohybrid based physical sensors initiates innovative prospects in the field of flexible electronics.