Anti-Müllerian hormone (AMH) is an ideal biomarker for the assessment of ovarian reserve. However, its application in determining ovarian reserve reduction is restricted due to the low sensitivity of existing AMH assays. Herein, a homebrew ultrasensitive digital AMH assay (UD-AMH) was established based on a single-molecule array (SiMoA, HD-X platform), and the analytical performance of UD-AMH was evaluated systematically. The limit of detection (LoD) and limit of quantitation (LoQ) of UD-AMH were 0.13 and 0.14 pg/mL, respectively, which is approximately 100-fold higher than that of the current reported general clinical AMH assay. A comparison study showed a high correlation, with r = 0.988 for the Beckman Access AMH assay and r = 0.945 for the Kangrun AMH assay. In addition, we found that the AMH concentrations of premature ovarian insufficiency (POI) patients were very low (2.59 (0.86, 31.79) pg/mL) and similar to those of perimenopausal women (2.37 (0.65, 35.88) pg/mL) but significantly higher than those of menopausal women (0.43 (0.28, 1.17) pg/mL). Furthermore, we observed that the AMH concentration of most hormone therapy (HT) treated POI patients decreased sharply, suggesting that the ovarian reserve of POI patients declines over time even under HT-treatment.