Studying the thermodynamics of the systems produced in ultra-relativistic heavy-ion collisions is crucial in understanding the QCD phase diagram. Recently, a new avenue has opened regarding the implications of large initial angular momentum and subsequent vorticity in the medium evolution in high-energy collisions. This adds a new type of chemical potential into the partonic and hadronic systems, called the rotational chemical potential. We study the thermodynamics of an interacting hadronic matter under rotation, formed in an ultra-relativistic collision. We introduce attractive and repulsive interactions through the van der Waals equation of state. Thermodynamic properties like the pressure (P), energy density (ε\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varepsilon $$\\end{document}), entropy density (s), trace anomaly ((ε-3P)/T4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(\\varepsilon - 3P)/T^{4}$$\\end{document}), specific heat (cv\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c_\ extrm{v}$$\\end{document}) and squared speed of sound (cs2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c_\ extrm{s}^{2}$$\\end{document}) are studied as functions of temperature (T) for zero and finite rotation chemical potential. The conserved charge fluctuations, which can be quantified by their respective susceptibilities, are also studied. The rotational (spin) density corresponding to the rotational chemical potential is explored. In addition, we explore the possible liquid–gas phase transition in the hadron gas with van der Waals interaction in the T – ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\omega $$\\end{document} phase space.
Read full abstract