BackgroundGlycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation. However, a specific and reliable biomarker is lacking. As GSD Ia patients demonstrate altered lipid metabolism and mitochondrial fatty acid oxidation, we built a machine learning model to identify GSD Ia patients based on plasma acylcarnitine profiles.MethodsWe collected plasma acylcarnitine profiles from 3958 patients, of whom 31 have GSD Ia. Synthetic samples were generated to address the problem of class imbalance in the dataset. We built several machine learning models based on gradient-boosted trees. Our approach included hyperparameter tuning and feature selection and generalization was checked using both nested cross-validation and a held-out test set.ResultsThe binary classifier was able to correctly identify 5/6 GSD Ia patients in a held-out test set without generating significant amounts of false positive results. The best model showed excellent performance with a mean received operator curve (ROC) AUC of 0.955 and precision-recall (PR) curve AUC of 0.674 in nested CV.ConclusionsThis study demonstrates an innovative approach to applying machine learning to ultra-rare diseases by accurately identifying GSD Ia patients based on plasma free carnitine and acylcarnitine concentrations, leveraging subtle acylcarnitine abnormalities. Acylcarnitine features that were strong predictors for GSD Ia include C16-carnitine, C14OH-carnitine, total carnitine and acetylcarnitine. The model demonstrated high sensitivity and specificity, with selected parameters that were not only robust but also highly interpretable. Our approach offers potential prospect for the inclusion of GSD Ia in newborn screening. Rare diseases are underrepresented in machine learning studies and this work highlights the potential for these techniques, even in ultra-rare diseases such as GSD Ia.
Read full abstract