We generate an atomic beam of titanium (Ti) using a "Ti-ball" Ti-sublimation pump, which is a common getter pump used in ultrahigh vacuum systems. We show that the sublimated atomic beam can be optically pumped into the metastable 3d3(4F)4sa5F5 state, which is the lower energy level in a cycling optical transition that can be used for laser cooling. We measure the atomic density and transverse and longitudinal velocity distributions of the beam through laser fluorescence spectroscopy. We find a metastable atomic flux density of 4.3(2) × 109s-1cm-2 with a mean forward velocity of 773(8) m/s at 2.55cm directly downstream of the center of the Ti-ball. Owing to the details of optical pumping, the beam is highly collimated along the transverse axis parallel to the optical pumping beam and the flux density falls off as 1/r. We discuss how this source can be used to load atoms into a magneto-optical trap.
Read full abstract